Wacky Breechloading Launcher
Posted: Wed Sep 14, 2016 6:25 pm
Developing from my last original post about coaxial launcher concerns, I've came up with an interesting concept I want to share. I'm not sure I will ever build anything practical out of it, but I'm interested to know your impressions.
Maybe It's an idea that makes possible my pipe-dream of a full-auto marble launching bullpup airgun... Maybe it's too complex to construct and get working...
Here's a sketch of the shooting sequence: It's an oversimplification to explain the concept.
Here's the details:
It's a Coax design, obviously. It uses the Chamber pressure to open into the Barrel.
If you look closely, the Barrel is flared. It has a lot of upsides: better flow, less jamming when loading a ball and easier to seal properly without sticking into the Main Piston's orifice.
Green little streaks are the rubber Seals and O-Rings.
There's a tall tube filled with balls/marbles which works as a magazine.
Red part is the Main Piston which is pushed by Chamber pressure.
The Barrel is kept sealed by the Main Piston being locked in place (see blue Latches).
Blue Latches are the tiny pieces in the bottom of each drawing with an axle each. One of them is connected to a trigger and the other is unlocked by the Bolt when it reaches the end of its travel forward.
Bolt is the orange part that drives within the Main Piston. Although I call it a "Bolt", it's more akin to a bolt carrier/striker/actual bolt hybrid in a firearm. The only thing it doesn't do is interacting with a locking surface but the trigger's. It isn't supposed to be affected by the Chamber's pressure, most of the time at least. Because of this fact a manual handle can be used to manually cycle the feeding in case the last round jams or didn't load properly. Kinda like a firearms bolt handle!
Lastly, the blue bars behind the Main Piston and Bolt are Springs. They simply push forward. Their combined force should be larger than the force exerted by the chamber pressure. The Bolt's Spring should be too strong as to stop a person from manually cycling it if needed.
I imagine the manual feeding be accomplished by rotating the Bolt using its handle. The Bolt will twist the Main Piston in such a way it exposes the two Balls contained within to an cut-out on the side of the Receiver. If there are no Balls there, you could insert them now.
The magazine would be a spring-loaded horizontal tube (unlike what's drawn) with marbles which at Stage 1 drop into an antechamber in the Main Piston and the channel space within. They are kept from rolling away by spring wire or a loose o-ring. Maybe I could design it without the antechamber, but I like it being there.
At Stage 2, the trigger is pulled and the Bolt is let off to push through the first marble in its way. The marble is pushed into the Barrel. The Bolt hits the Main Piston's Latch unlocking it.
If the Marble is too large or unevenly shaped it won't fit in the barrel and jam the Bolt. The jammed Bolt is unable to trip the Main Piston so it won't shoot. By this time, the user can pull the handle to recock the Bolt and proceed to manual feeding (or, in this case reject the marble).
Chamber pressure pushes the Main Piston away along with the Bolt because it is in the way. Air rushes into the Barrel, pushing the marble along. Now here's a problem I recognized in this concept: Originally I thought the Main Piston would mechanically push the Bolt all the way back, but I can't figure how that's geometrically possible. I wanted to know if it was possible for the Chamber pressure to push the Bolt the last half way of travel before running out of enough pressure. Assuming that to be the case, the Bolt would eventually be caught by its Latch. The Chamber pressure would drop enough for the Main Piston Spring to return the Main Piston, sealing the barrel again. We're now back to Stage 1.
To guarantee that pressure in the Chamber drops low enough for proper cycling, a Choke is used to delay the filling of the Chamber. Maybe, in a needlessly complicated variation of this design, one could have the Main Piston to lock the Regulator closed, but I digress.
To enable automatic shooting, the Regulator's piston could have a linkage that trips the Bolt's Latch, so that when desired pressure is reached in the Chamber, the Regulator shuts down and pulls the trigger at the same time.
If I were to build this, maybe I'd lock the Main Piston by using a tilting block, like the SVT-40 or FNFAL rifles. The Bolt would be latched by a trigger group similar to a crossbow's and actuated by bicycle cable. The Magazine would be a fixed, top-feeding, tube. Maybe a en-block clip could be designed for it. It would be cool if it had an hopper like the Krag–Jørgensen rifle, but I don't really understand how it works.
After rough optimistic measurements, I think this breech system would require about 120 millimeters of length which is great. Maybe the length could be reduced further by using a spring-loaded arm like in the Webley semi-auto pistols. May the Main Piston could be attached to a sleeve inside the Chamber and be pushed by a spring embracing the Barrel. Similar to what some pistols do. Maybe the Bolt could be a hollow tube containing its own spring. Etc. Etc....
For now... That's all folks!
Maybe It's an idea that makes possible my pipe-dream of a full-auto marble launching bullpup airgun... Maybe it's too complex to construct and get working...
Here's a sketch of the shooting sequence: It's an oversimplification to explain the concept.
Here's the details:
It's a Coax design, obviously. It uses the Chamber pressure to open into the Barrel.
If you look closely, the Barrel is flared. It has a lot of upsides: better flow, less jamming when loading a ball and easier to seal properly without sticking into the Main Piston's orifice.
Green little streaks are the rubber Seals and O-Rings.
There's a tall tube filled with balls/marbles which works as a magazine.
Red part is the Main Piston which is pushed by Chamber pressure.
The Barrel is kept sealed by the Main Piston being locked in place (see blue Latches).
Blue Latches are the tiny pieces in the bottom of each drawing with an axle each. One of them is connected to a trigger and the other is unlocked by the Bolt when it reaches the end of its travel forward.
Bolt is the orange part that drives within the Main Piston. Although I call it a "Bolt", it's more akin to a bolt carrier/striker/actual bolt hybrid in a firearm. The only thing it doesn't do is interacting with a locking surface but the trigger's. It isn't supposed to be affected by the Chamber's pressure, most of the time at least. Because of this fact a manual handle can be used to manually cycle the feeding in case the last round jams or didn't load properly. Kinda like a firearms bolt handle!
Lastly, the blue bars behind the Main Piston and Bolt are Springs. They simply push forward. Their combined force should be larger than the force exerted by the chamber pressure. The Bolt's Spring should be too strong as to stop a person from manually cycling it if needed.
I imagine the manual feeding be accomplished by rotating the Bolt using its handle. The Bolt will twist the Main Piston in such a way it exposes the two Balls contained within to an cut-out on the side of the Receiver. If there are no Balls there, you could insert them now.
The magazine would be a spring-loaded horizontal tube (unlike what's drawn) with marbles which at Stage 1 drop into an antechamber in the Main Piston and the channel space within. They are kept from rolling away by spring wire or a loose o-ring. Maybe I could design it without the antechamber, but I like it being there.
At Stage 2, the trigger is pulled and the Bolt is let off to push through the first marble in its way. The marble is pushed into the Barrel. The Bolt hits the Main Piston's Latch unlocking it.
If the Marble is too large or unevenly shaped it won't fit in the barrel and jam the Bolt. The jammed Bolt is unable to trip the Main Piston so it won't shoot. By this time, the user can pull the handle to recock the Bolt and proceed to manual feeding (or, in this case reject the marble).
Chamber pressure pushes the Main Piston away along with the Bolt because it is in the way. Air rushes into the Barrel, pushing the marble along. Now here's a problem I recognized in this concept: Originally I thought the Main Piston would mechanically push the Bolt all the way back, but I can't figure how that's geometrically possible. I wanted to know if it was possible for the Chamber pressure to push the Bolt the last half way of travel before running out of enough pressure. Assuming that to be the case, the Bolt would eventually be caught by its Latch. The Chamber pressure would drop enough for the Main Piston Spring to return the Main Piston, sealing the barrel again. We're now back to Stage 1.
To guarantee that pressure in the Chamber drops low enough for proper cycling, a Choke is used to delay the filling of the Chamber. Maybe, in a needlessly complicated variation of this design, one could have the Main Piston to lock the Regulator closed, but I digress.
To enable automatic shooting, the Regulator's piston could have a linkage that trips the Bolt's Latch, so that when desired pressure is reached in the Chamber, the Regulator shuts down and pulls the trigger at the same time.
If I were to build this, maybe I'd lock the Main Piston by using a tilting block, like the SVT-40 or FNFAL rifles. The Bolt would be latched by a trigger group similar to a crossbow's and actuated by bicycle cable. The Magazine would be a fixed, top-feeding, tube. Maybe a en-block clip could be designed for it. It would be cool if it had an hopper like the Krag–Jørgensen rifle, but I don't really understand how it works.
After rough optimistic measurements, I think this breech system would require about 120 millimeters of length which is great. Maybe the length could be reduced further by using a spring-loaded arm like in the Webley semi-auto pistols. May the Main Piston could be attached to a sleeve inside the Chamber and be pushed by a spring embracing the Barrel. Similar to what some pistols do. Maybe the Bolt could be a hollow tube containing its own spring. Etc. Etc....
For now... That's all folks!