Spudblaster put it very well.
The Latke spark strip / multiple spark data is of only limited use. Indeed, I looked at his comparison of two versus three sparks on the strip and there is no statistically significant difference in muzzle velocities.
As you can see in the graph above there really isn't any difference between two and three sparks on the strip. (The Student's T-test values for the two averages is 0.33.) Furthermore, there is an outlier value for the 3-spark data (marked with an arrow in the graph). Without that one data point the two averages are even closer to each other. (The data is from
http://www.burntlatke.com/strip.html)
Nobody has ever measured and reported hard numbers on how much multiple sparks affect the performance of a gun other than Latke's strip data. We really don't know how much multiple sparks boost performance when the sparks are not on a strip. Like Spudblaster15 said, the positioning of the spark strip limits the area of the burn front since the strip is up against the wall of the chamber. Basic physics would suggest that two sparks on a strip are roughly the same as a single spark at the center of the chamber (using screws for electrodes for example).
As to why a too large chamber would decrease performance in a combustion gun...
Obviously, you want as much pressure behind the spud as possible as the spud moves through the barrel. But combustion of propane + air is a fairly slow process. It takes tens of milliseconds from the time the fuel is ignited until the spud exits the barrel. So the sequence of events is not;
- You hit the trigger
- The fuel burns and maximum pressure in the chamber is reached
- The spud starts to move.
If that was the course of events then a burst disk gun wouldn't be any better than a standard gun.
To understand why the chamber size is critical you have to understand the combustion process.
1. The final temperature and pressure obtained in a closed chamber is independent of the chamber size (assuming an adiabatic process). However, the
burn rate of propane + air is a function of the chamber size. A large chamber takes longer to fully combust then a small chamber. Why? Because combustion of 1 unit of fuel in a large chamber heats the rest of the gases less than the combustion of 1 unit of fuel in the small chamber. To put it another way, with a small chamber the acceleration of the burning of the fuel is faster because less combustion is needed to heat the remaining fuel. In a large chamber everything happens slower.
2. As the pressure in the chamber rises the spud starts to move as soon as the pressure*area exceeds (atmospheric pressure*area)+static friction values. If we figure 30 pounds of static friction and a 2"ID barrel, the spud
starts to move when the chamber pressure exceeds just 10 PSIG. Complete combustion of propane in air has a peak pressure of about 120 PSIG (again for an adiabatic system). So our spud starts to move when the pressure has risen just 8% of the way to the maximum theoretical pressure.
3. If the chamber is very large the spud starts to move when the rate of pressure rise is still rather small. If the chamber is sufficiently large then the actual movement of the spud (and the resulting increase in chamber volume) is a small factor. As a result, the combustion process continues at the slow burn rate characteristic of a large chamber. If the barrel is too short for the chamber then while the spud is moving the pressure in the chamber is never very high and you run out of barrel before combustion is anywhere near complete.
4. For a properly sized chamber, once the spud starts to move things get complicated. The gases in the chamber expand and cool. The rate of combustion slows down relative to what it would have been if the spud hadn't moved. Nonetheless, the smaller chamber size means the unburned gases are getting heated faster than they would in a large chamber.
So, for a grossly oversized chamber the pressure rises until the spud starts to move. Since the pressure is rising relatively slowly the pressure during the entire time the spud is moving is limited to that was present when the spud started to move, ~10 PSIG.
For a smaller chamber the pressure is rising faster and during at least some of the time the spud is moving it is possible to get the pressure behind the spud to be greater then 10 PSIG.
Looking at Latke's CB data we can get a pretty good estimate of just how critical the CB ratio actually is. The peak in the muzzle velocity around a CB of 0.8 is pretty broad. Statistically, there is really no difference between CB ratios in the range of 0.5 and 1.0 (I'm looking at his graphs at
http://www.burntlatke.com/jpg600/15cb-graph.gif and
http://www.burntlatke.com/jpg600/25cb-graph.gif).
But, take a look at the 15cb-graph for a spud at a CB of 1.4 (chamber too large). The muzzle velocity has dropped from ~350 FPS to ~230 FPS. The energy in the spud has dropped by about 57% even though the total potential energy in the chamber hasn't changed. This chamber is too large for the barrel... or is the barrel too short for the chamber?
So we are at the trickiest question. Take that last test gun of Latke, the 1.4 CB giving a ~230 FPS muzzle velocity. Chop the chamber down to a ~0.8 CB and use the exact same barrel. Will the muzzle velocity of the gun go up or down with the new chamber size?
Nobody really knows.
What we can predict though is that if the chamber is
grossly too large the muzzle velocity will drop. But what about more reasonable CB values of say 1.5?